

Higher Thermal and Thermomechanical Stresses in BIPV Modules

Ebrar Özkalay, SUPSI PVLab

Hasselt, 25.04.2024, 2:00pm - 3:30pm (CET)

What is **BIPV**?

Building Attached/Added PV (BAPV):

- 1. Generate electricity
- 2. Reduce CO₂ emissions

P. Heinstein et al., De Gruyter (2013)

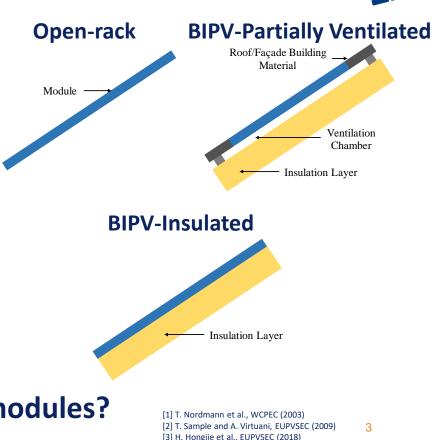
Building Integrated PV (BIPV):

- 1. Generate electricity
- 2. Reduce CO₂ emissions
- 3. Serve as building material
 - Weather protection
 - Thermal insulation
 - Noise protection etc.

P. Heinstein et al., De Gruyter (2013)

Solaris, Solararchitecture

Motivation

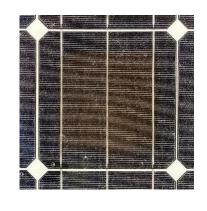


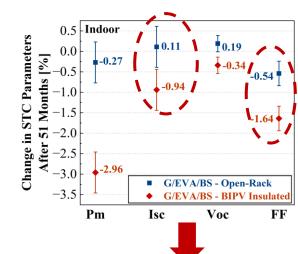
- Open-rack
 - Free rear-side air ventilation
- BIPV-Partially Ventilated
 - Reduced rear-side air ventilation
- BIPV-Insulated
 - No rear-side air ventilation

BIPV modules operate at harsher conditions:

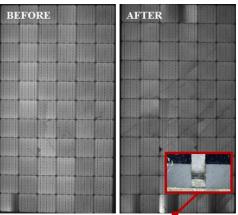
- 1. Elevated operating temperatures [1,2]
- 2. Larger diurnal (day-night) temperature changes [3]
- 3. More frequent partial shadow [4]

Long-term performance of BIPV modules?


[4] A. Fairbrother et al. Solar RRL (2021)



Motivation


Two degradation processes found in BIPV configuration_[1]:

- Faster photothermal degradation of the encapsulants (discolouration) due to the higher operating temperature (higher thermal stress) in BIPV configurations, resulting in I_{sc} loss.
- Formation of damaged cells and metallisation due to larger diurnal temperature changes (higher thermomechanical stresses) in BIPV conditions, resulting in FF loss.

How should BIPV modules be tested?

4 [1] E. Özkalay et al., submitted to Energy & Buildings

- **1. Elevated Operating Temperatures**
- 2. Larger Diurnal (day-night) Temperature Changes
 - Operating Temperature Analysis (IEC TS 63126 & IEC 62892)
 - Extended and Accelerated Thermal Cycling Test
- 3. More Frequent Partial Shading
 - Hot-spot Test and its sufficiency for BIPV testing?

Stress 1: Elevated Operating Temperatures

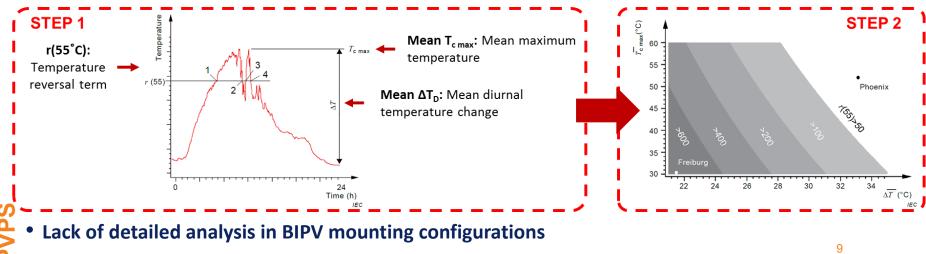
IEC TS 63126 (2020): "Guidelines for qualifying PV modules, components and materials for operation at high temperature"

- Modules in hot climates or in BIPV configurations may operate at temperatures higher than those used in the qualification and safety tests of IEC 61215 and IEC 61730
- T₉₈ (98th percentile of real-life temperatures, **175.2 hours/year**): reasonable combination of **high** temperature and time-spent at the high temperature

Standard	Test Reference	Test Name	Original Requirement T ₉₈ ≤ 70°C	Proposal – Level 1 70°C < T ₉₈ ≤ 80°C	Proposal – Level 2 80°C < T ₉₈ ≤ 90°C
	MQT 09	Hot-spot endurance test	(50±10)°C	+10°C , (60±10)°C	+20°C , (70±10)°C
	MQT 10	UV preconditioning	(60±5)°C	+10°C , (70±5)°C	+20°C , (80±5)°C
IEC	MQT 11	Thermal cycling test	(85±2)°C	+10°C , (95±2)°C	+20°C , (105±2)°C
61215	MOT 19	Bypass diode testing chamber – Part 1	(75±2)°C I _{sc}	+ 15°C , (90±2)°C 1.15 x I _{sc} for diode T	+ 25°C , (100±2)°C 1.15 x I _{sc} for diode T
	MQT 18	Bypass diode testing chamber – Part 2	(75±2)°C 1.25 x I _{sc}	+ 15°C , (90±2)°C 1.4 x I _{sc} for stress	+25°C , (100±2)°C 1.4 x I _{sc} for stress

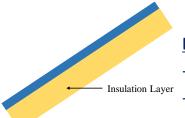
Lack of detailed analysis on measured operating module temperature and T₉₈ in BIPV mounting configurations

Stress 2: Larger Diurnal (Day-Night) Temperature Changes

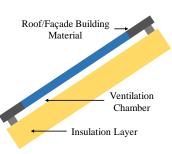


IEC 62892 (2019): "Extended Thermal Cycling of PV Modules – Test Procedure"

- Increased loss of FF (failing solder bond) in hot climates with respect to cooler climates [1,2]
- Thermal Cycling Test → to determine the ability of the PV modules to withstand thermal mismatch, fatigue, and other stresses caused by rapid, non-uniform or repeated changes of temperature

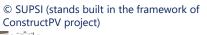

• IEC 62892: to evaluate modules for deployment in locations most susceptible to thermal cycling type stress

D. C. Jordan, J. Wohlgemuth and S. Kurtz, "Technology and climate trends in PV module degradation", doi: 10.4229/27thEUPVSEC2012-4DO.5.1.
N. Bosco, T. J. Silverman and S. Kurtz, "Climate specific thermomechanical fatigue of flat plate photovoltaic module solder joints", doi: 10.1016/j.microrel.2016.03.024.


BIPV Test Stands and Buildings

BIPV Insulated Roof:

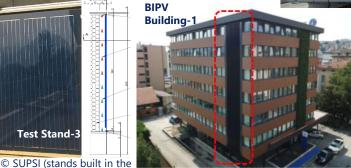
- Test Stand-1*
- Test Stand-4*


BIPV Partially Ventilated Roof

Test Stand-2*

BIPV Partially Ventilated Façade

- **Test Stand-3**
- Test Stand-4
- **BIPV Building-1**
- **BIPV Building-2**


*: Same module types in open-rack as well

Test Stand-1

Test Stand-3

framework of IEA PVPS T15 project)

Test Stand-2

PVPS

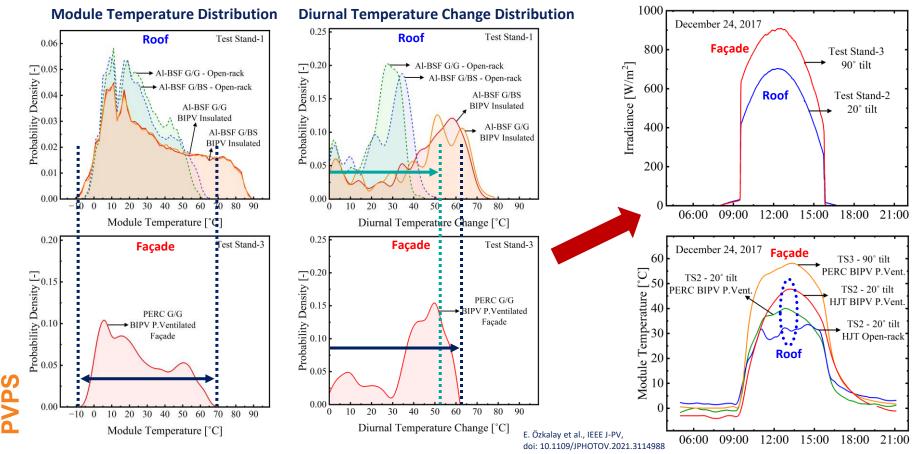
Mounting Configuration	IEC TS 63126:2020 (thermal)			T ₉₈ ≤ 90°C) not advised advised	
would ing computation	Standard (T ₉₈ ≤ 70°C)	Level-1 (70°C < T ₉₈ ≤ 80°C)	Level-2 (80°C < T ₉₈ ≤ 90°C)		Extended TC is advised
Open-rack – Roof	12	-	-	9	3 (same type)

• All **open-rack modules** have $T_{98} \le 70^{\circ}C$ and extended TC not necessary (except 3 modules which are same type)

Mounting Configuration	IEC TS 63126:2020 (thermal)			IEC 62892:2019 (thermomechanical)	
Mounting configuration	Standard (T ₉₈ ≤ 70°C)	Level-1 (70°C < T ₉₈ ≤ 80°C)	Level-2 (80°C < T ₉₈ ≤ 90°C)	Extended TC is not advised	Extended TC is advised
Open-rack – Roof	12	-	-	9	3 (same type)
BIPV Insulated – Roof	-	5	-	-	5

- All **open-rack modules** have $T_{98} \le 70^{\circ}C$ and extended TC not necessary (except 3 modules which are same type)
- All **BIPV Insulated Roof modules** have T₉₈ > 70°C and extended TC is necessary

Mounting Configuration	IEC TS 63126:2020 (thermal)				
Mounting configuration	Standard (T ₉₈ ≤ 70°C)	Level-1 (70°C < T ₉₈ ≤ 80°C)	Level-2 (80°C < T ₉₈ ≤ 90°C)	Extended TC is not advised	
Open-rack – Roof	12	-	-	9	3 (same type)
BIPV Insulated – Roof	-	5	-	-	5
BIPV Partially Ventilated – Roof	1	1	-	-	2


- All **open-rack modules** have $T_{98} \le 70^{\circ}C$ and extended TC not necessary (except 3 modules which are same type)
- All BIPV Insulated Roof modules have T₉₈ > 70°C and extended TC is necessary
- All **BIPV Partially Ventilated Roof modules** need extended TC but their T₉₈ strongly depends on their ventilation chamber design

Mounting Configuration	IEC TS 63126:2020 (thermal)				92:2019 echanical)
Mounting configuration	Standard (T ₉₈ ≤ 70°C)	Level-1 (70°C < T ₉₈ ≤ 80°C)	Level-2 (80°C < T ₉₈ ≤ 90°C)	Extended TC is not advised	Extended TC is advised
Open-rack – Roof	12	-	-	9	3 (same type)
BIPV Insulated – Roof	-	5	-	-	5
BIPV Partially Ventilated – Roof	1	1	-	-	2
BIPV Partially Ventilated – Façade	6	-	-	-	6

- All **open-rack modules** have $T_{98} \le 70^{\circ}C$ and extended TC not necessary (except 3 modules which are same type)
- All BIPV Insulated Roof modules have T₉₈ > 70°C and extended TC is necessary
- All **BIPV Partially Ventilated Roof modules** need extended TC but their T₉₈ strongly depends on their ventilation chamber design
- All **BIPV Partially Ventilated Façade modules** have $T_{98} \le 70^{\circ}C$ but they need extended TC

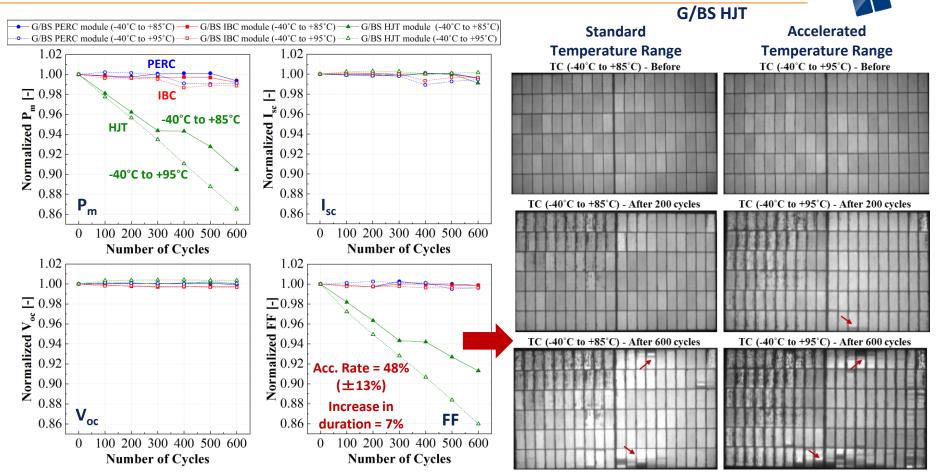
Operating Temperature Analysis BIPV P.Ventilated Façade

Mounting Configuration		IEC TS 63126:20 (thermal)	(thermal) I-1 (70°C < Level-2 (80°C < Extend		IEC 62892:2019 (thermomechanical)	
wounting computation	Standard (T ₉₈ ≤ 70°C)	Level-1 (70°C < T ₉₈ ≤ 80°C)	•	Extended TC is not advised	Extended TC is advised	
Open-rack – Roof	12	-	-	9	3 (same type)	
BIPV Insulated – Roof	-	5	-	-	5	
BIPV Partially Ventilated – Roof	1	1	-	-	2	
BIPV Partially Ventilated – Façade	6	-	-	-	6	

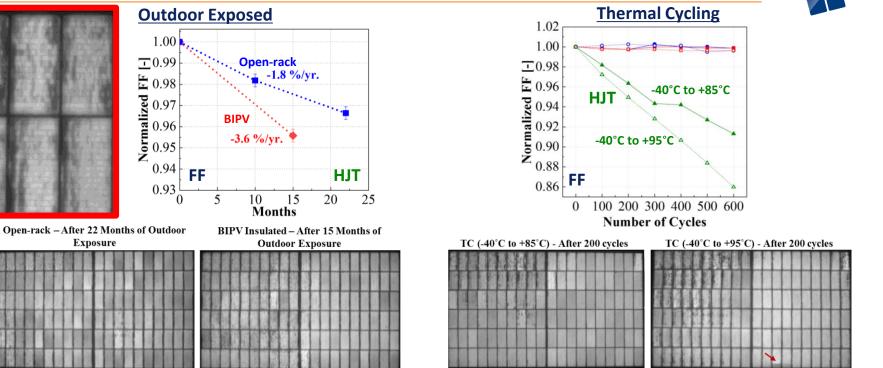
Main takeaways:

- T₉₈ (IEC TS 63126) highly depends on the type of BIPV configuration and orientation
 - All BIPV Insulated roof modules have T₉₈ > 70°C
 - All BIPV Partially Ventilated façade modules have T₉₈ ≤ 70°C
- All BIPV modules need extended thermal cycling test according to IEC 62892.

Extended and Accelerated Thermal Cycling Test


PVPS

Extended and Accelerated Thermal Cycling (TC) Test


- IEC 62892: Larger thermomechanical stress in BIPV configuration → Extended TC test
- IEC TS 63126: If 70°C < T₉₈ ≤ 80°C (larger thermal stress), maximum temperature of TC is 95°C

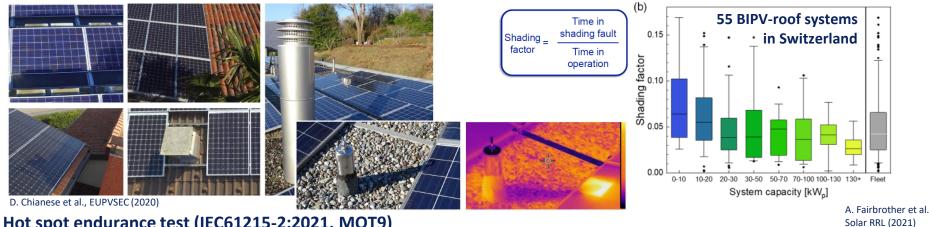
	Temperature Range	Number of Cycles	
Thermal Cycling (Extended)	-40°C to +85°C (Standard range according to IEC 61215)	600 cycles (Measurements every 100 cycles)	
Accelerated Thermal Cycling (Extended)	-40°C to +95°C	600 cycles (Measurements every 100 cycles)	

Extended and Accelerated Thermal Cycling (TC) Test

Extended and Accelerated Thermal Cycling (TC) Test Suitable for BIPV?

- Field representative results (IV and EL)
- More time necessary to see how the issues of the outdoor exposed module evolves
- More samples need to be tested

PVPS



Stress 3: More Frequent Partial Shading

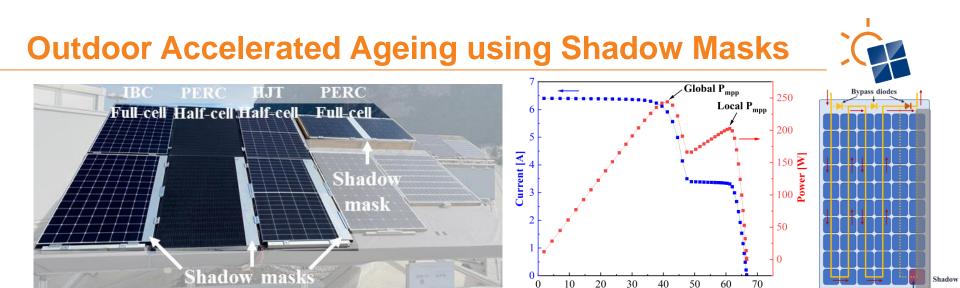
PVPS

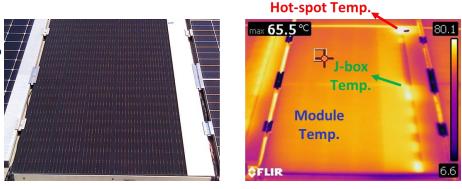
More Frequent Partial Shading

Hot spot endurance test (IEC61215-2:2021, MQT9)

- To assess module's ability to resist local-point/cell heating under partial shading
- **IEC TS 63126:2020** Guidelines for gualifying PV modules, components and materials for operation at high temperatures $\rightarrow T_{98}$ (175.2hour/year)

Ñ	Module Temperature	IEC 61215:2021 (T ₉₈ ≤ 70°C)	Level 1 (70°C < T ₉₈ ≤ 80°C)	Level 2 (80°C < T ₉₈ ≤ 90°C)
Рүр	IEC TS 63126:2020	55±15°C (50±10°C*) *IEC 61215:2016	60±10°C	70±10°C

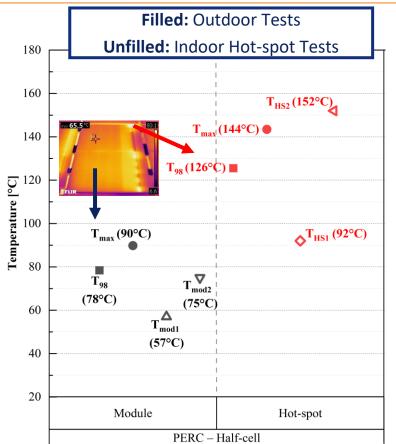

More Frequent Partial Shading


- Effect of cell technology and string length on hot-spot temperature
- Sufficiency of HS test for BIPV in terms of testing temperature

		Indoor Hot-s	pot Endurance Tests
Parallel strings («Butterfly»)		IEC 61215-2:2021 (55°C, max 5h) + 5h	IEC TS 63126:2020 Level-2 (75°C, max 5h) + 5h
	1 - PERC Half-Cell (20 cells/diode)	1	1
	2 - HJT Half-Cell (20 cells/diode)	1	1
	3 - IBC Full-Cell (104 cells, 3 diodes)	1	1
	4 - PERC Full-cell (Short + Long String) (10 cells/diode + 20 cells/diode)	1	-
10 cells			
		E Özkalayı et al "The effect of	nortial chading on the

E Özkalay, et. al, "The effect of partial shading on the 24 reliability of photovoltaic modules in the builtenvironment", EPJ Photovoltaics, 2024

- Stress on bypass diode and module materials
- Difference between Global P_{mpp} and Local P_{mpp} is 10±5%
- Shadow mask 36% transmittance
- 13 months of monitoring
- Module, hot-spot and junction box temperatures every
- minute
- IV curves every minute


Hot-spo

Voltage [V]

E Özkalay, et. al, "The effect of partial shading on the 25 reliability of photovoltaic modules in the builtenvironment", EPJ Photovoltaics, 2024

Sufficieny of HS test for BIPV?

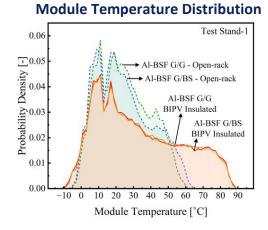
98th percentile temperature (T ₉₈)	
Maximum temperature (T _{max})	

Module temperature during HS test at 55°C (T_{mod1})

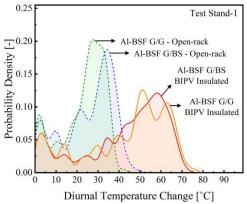
Module temperature during HS test at 75°C (T_{mod2})

Hot-spot temperature during HS test at 55°C (T_{HS1})

Hot-spot temperature during HS test at 75°C (T_{HS2})

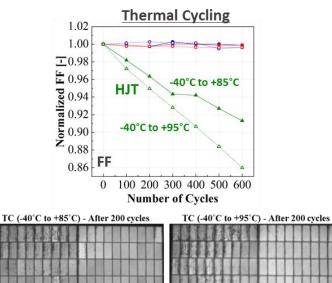

Hot-spot Endurance Test	IEC 61215-2:2021 (2016)	Level 1 (70°C < T ₉₈ ≤ 80°C)	Level 2 (80°C < T ₉₈ ≤ 90°C)
IEC TS 63126:2020	55±15°C (50±10°C)	60±10°C	70±10°C
Proposal of this study	55±15°C	75±15℃	85±15℃

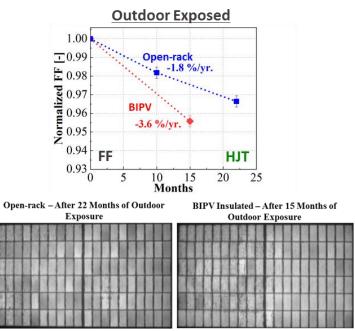
HS test should be performed at higher module temperatures for BIPV testing!


E Özkalay, et. al, "The effect of partial shading on the 26 reliability of photovoltaic modules in the builtenvironment", EPJ Photovoltaics, 2024

Summary and Conclusion – 1

- Thermal stress: T₉₈ (IEC TS 63126) highly depends on the type of BIPV configuration and orientation
 - All BIPV Insulated roof modules have T₉₈ > 70°C
 - For BIPV Partially Ventilated roof modules, T₉₈ depends on the ventilation chamber design
 - All BIPV Partially Ventilated façade modules have T₉₈ ≤ 70°C
- Thermomechanical stress: All BIPV modules need extended thermal cycling test (IEC 62892)

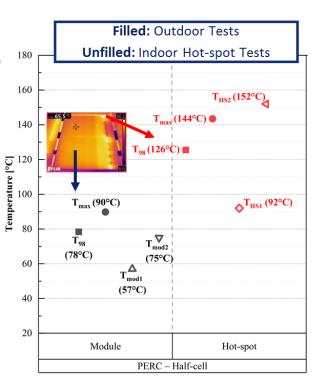

Diurnal Temperature Change Distribution



Summary and Conclusion – 2

Extended and Accelerated Thermal Cycling:

• Increasing the maximum temperature of the TC test and extending the test can be representative for BIPV testing, but more samples need to be tested


PVPS

Summary and Conclusion – 3

• 15°C higher module temperature for Level 1 & 2 in IEC TS 63126:2020

Hot-spot Endurance Test	IEC 61215-2:2021 (2016)	Level 1 (70°C < T ₉₈ ≤ 80°C)	Level 2 (80°C < T ₉₈ ≤ 90°C)
IEC TS 63126:2020	55±15°C (50±10°C)	60±10°C	70±10°C
Proposal of this study	55±15°C	75±15℃	85±15°C

iea-pvs.org

Thank you!

Ebrar Özkalay, SUPSI PVLab ebrar.ozkalay@supsi.ch

Acknowledgement:

This work is funded by the **Swiss National Science Foundation** under COST IZCOZ0_182967/1 and **Swiss Federal Office of Energy**, BFE.

SUPSI PVLab, SUPSI BIPV-Innovative Building Skin Team and SUPSI ISAAC Engineering team researchers and personnel

Schweizerische Eidgenossenschaft Confédération suisse Confederazione Svizzera Confederaziun svizra

Schweizerischer Nationalfonds Fonds national suisse Fondo nazionale svizzero Swiss National Science Foundation

Swiss Federal Office of Energy SFOE

SUPSI